Ex. 1 If $f(x)=\left\{\begin{array}{l}x^{2}+2, x \geq 1 \\ 2 x+1, x<1\end{array}\right.$, then $\operatorname{Lim}_{x \rightarrow 1} f(x)$ equals -
(A) 1
(B) 2
(C) 3
(D) Does not exist

Sol. $\quad \lim _{x \rightarrow 1-0} f(x) \lim _{h \rightarrow 0}=[2(1-h)+1]=3$
$\lim _{x \rightarrow 1+0} f(x)=\lim _{h \rightarrow 0}\left[(1+h)^{2}+2\right]=3$
$\therefore \mathrm{LHL}=\mathrm{RHL}$, so $\lim _{\mathrm{x} \rightarrow 1} \mathrm{f}(\mathrm{x})=3 . \quad$ Ans.[C]

Ex. $2 \lim _{\mathrm{x} \rightarrow 0} \frac{1+\mathrm{e}^{-1 / \mathrm{x}}}{1-\mathrm{e}^{-1 / \mathrm{x}}}$ is equal to -
(A) 1
(B) -1
(C) 0
(D) Does not exist

Sol. $\quad \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{1+\mathrm{e}^{1 / \mathrm{h}}}{1-\mathrm{e}^{1 / \mathrm{h}}}$

$$
\begin{aligned}
&=\lim _{\mathrm{h} \rightarrow 0}=\frac{\mathrm{e}^{-1 / \mathrm{h}}+1}{\mathrm{e}^{-1 / \mathrm{h}}-1}-1 \\
& \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0}=\frac{1+\mathrm{e}^{-1 / \mathrm{h}}}{1-\mathrm{e}^{-1 / \mathrm{h}}}=\frac{1+0}{1-0}=1
\end{aligned}
$$

LHL \neq RHL, so given limit does not exist. Ans.[D]

Ex. $3 \lim _{x \rightarrow \infty} \frac{2 x^{2}+3 x}{3 x^{2}+4}$ equals -
(A) $1 / 2$
(B) $2 / 3$
(C) $3 / 4$
(D) 0

Sol. $=\lim _{x \rightarrow \infty} \frac{2+(3 / x)}{3+\left(4 / x^{2}\right)}=\frac{2}{3}$
Ans.[B]

Ex. $4 \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)$ equals -
(A) -1
(B) 0
(C) 1
(D) None of these

Sol. Limit $=\lim _{x \rightarrow \infty} x\left[\left(1+\frac{1}{x^{2}}\right)^{1 / 2}-1\right]$
$=\lim _{\mathrm{x} \rightarrow \infty} \mathrm{x}\left[1+\frac{1}{2 \mathrm{x}^{2}}-\frac{1}{8 \mathrm{x}^{4}}+\ldots-1\right]$
$=\lim _{x \rightarrow \infty}\left[\frac{1}{2 x}-\frac{1}{8 x^{3}}+\ldots\right]=0$.
Ans.[B]

Ex. $5 \lim _{x \rightarrow-1}\left(\frac{x^{2}-1}{x^{2}+3 x+2}\right)$ is equal to-
(A) -2
(B) $1 / 2$
(C) 0
(D) 1

Sol. Limit $=\lim _{x \rightarrow-1} \frac{(x-1)(x+1)}{(x+2)(x+1)}=\frac{-1-1}{-1+2}=-2$
Ans.[A]

Ex. $6 \lim _{x \rightarrow a}\left[\frac{x^{2}-(a+1) x+a}{x^{3}-a^{3}}\right]$ is equal to -
(A) $\frac{\mathrm{a}-1}{3 \mathrm{a}^{2}}$
(B) $a-1$
(C) a
(D) 0

Sol. $\lim _{x \rightarrow a}\left[\frac{x^{2}-(a+1) x+a}{x^{3}-a^{3}}\right]\left(\frac{0}{0}\right.$ form $)$
$=\lim _{\mathrm{x} \rightarrow \mathrm{a}}=\frac{2 \mathrm{x}-\mathrm{a}-1}{3 \mathrm{x}^{2}}=\frac{\mathrm{a}-1}{3 \mathrm{a}^{2}}$
(D.L.Hospital rule)

Ans.[A]

Ex. $7 \lim _{x \rightarrow 3} \frac{x-3}{|x-3|}$, is equal to -
(A) 1
(B) -1
(C) 0
(D) Does not exist

Sol. $\quad L H L=\lim _{h \rightarrow 0} \frac{(3-h)-3}{|(3-h)-3|}$
$=\lim _{h \rightarrow 0} \frac{-h}{|-h|}=-1$
$R H L=\lim _{h \rightarrow 0} \frac{(3+h)-3}{|(3+h)-3|}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{~h}}{|\mathrm{~h}|}=1$
LHL \neq RHL, so limit does not exist.Ans.[D]

Ex. 8 If $f(x)=\frac{x+|x|}{x}$, then $\lim _{x \rightarrow 0} f(x)$ equals-
(A) 2
(B) 0
(C) 1
(D) Does not exist

Sol. $\quad L H L=\lim _{h \rightarrow 0} \frac{-h+|h|}{-h}=\lim _{h \rightarrow 0}(0)=0$
$\mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{~h}+|\mathrm{h}|}{\mathrm{h}}=2$
LHL \neq RHL \Rightarrow does not exist. Ans.[D]

Ex. $9 \lim _{x \rightarrow 0} \frac{x}{\sqrt{1+x}-\sqrt{1-x}}$ is equal to -
(A) $1 / 2$
(B) 2
(C) 1
(D) 0

Sol. Limit $=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+x}+\sqrt{1-x})}{(1+x)-(1-x)}$

$$
=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}+\sqrt{1-\mathrm{x}}}{2}=1
$$

Ans.[C]

Ex. $10 \lim _{x \rightarrow 0} \frac{x^{x}-\log (1+\mathrm{x})}{\mathrm{x}^{2}}$ equals -
(A) $1 / 2$
(B) 1
(C) $3 / 2$
(D) 2

Sol. $\lim _{x \rightarrow 0} \frac{x\left(1+x+\frac{x^{2}}{2!}+\ldots .\right)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots .\right)}{x^{2}}$

$$
=\lim _{x \rightarrow 0}\left(\frac{3}{2}+\frac{1}{6} x+\ldots\right)=3 / 2
$$

Ans.[C]

Ex. 11 The value of $\lim _{x \rightarrow 0}\left[\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right]$ is -
(A) $-1 / 2$
(B) $1 / 2$
(C) $-1 / 3$
(D) $1 / 3$

Sol. Limit $=\lim _{x \rightarrow 0} \frac{\sin ^{2} x-x^{2}}{x^{2} \cdot \sin ^{2} x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\left(x-\frac{x^{3}}{3!}+\ldots\right)^{2}-x^{2}}{x^{2}\left(x-\frac{x^{3}}{3!}+\ldots\right)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}-\frac{1}{3} x^{4}+\ldots . x^{2}}{x^{4}\left(1-\frac{x^{2}}{3!}+\ldots\right)^{2}}=-1 / 3 \text { Ans.[C] }
\end{aligned}
$$

Ex. $12 \lim _{x \rightarrow 0} \frac{\tan 2 x-x}{3 x-\sin x}$ equals-
(A) $2 / 3$
(B) $1 / 3$
(C) $1 / 2$
(D) 0

Sol. The given limit is in the form, therefore applying L 'Hospital's rule, we get
Limit $=\lim _{x \rightarrow 0} \frac{2 \sec ^{2} 2 x-1}{3-\cos x}=\frac{2-1}{3-1}=\frac{1}{2}$ Ans.[C]

Ex. $13 \lim _{x \rightarrow 0} \frac{\sin x+\log (1-\mathrm{x})}{\mathrm{x}^{2}}$ is equal to -
(A) 0
(B) $1 / 2$
(C) $-1 / 2$
(D) Does not exist

Sol. It is in $0 / 0$ form, so using Hospital rule, we have

$$
\begin{aligned}
& \text { Limit }=\lim _{x \rightarrow 0} \frac{\cos x-\frac{1}{1-x}}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{-\sin x-\frac{1}{(1-x)^{2}}}{2}=-1 / 2
\end{aligned}
$$

(0/0 form)

Ans.[C]

Ex. $14 \lim _{x \rightarrow \infty} \frac{\sin x}{x}$ equals -
(A) 1
(B) 0
(C) ∞
(D) Does not exist

Sol. $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$
$=\lim _{x \rightarrow \infty}(a$ finite number between -1 and 1$) / \infty$ $=0$

Ans.[B]
Ex. $15 \lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}}$ is equal to -
(A) e^{3}
(B) $e^{1 / 3}$
(C) 1
(D) e

Sol. Limit $=\lim _{x \rightarrow 0}\left(\frac{x+x^{3} / 3+\ldots .}{x}\right)^{1 / x^{2}}$
$=\lim _{x \rightarrow 0}\left(1+\frac{x^{3}}{3}\right)^{1 / x^{2}}$
$[\because \mathrm{x} \rightarrow 0$, so neglecting higher powers of x$]$
$=\lim _{x \rightarrow 0}\left[\left(1+\frac{x^{2}}{3}\right)^{3 / x^{2}}\right]^{1 / 3}=e^{1 / 3}$
Ans.[B]

Ex. 16 If $f(x)=\sqrt{\frac{x-\sin x}{x+\cos ^{2} x}}$, then $\lim _{x \rightarrow \infty} f(x)$ equals -
(A) 0
(B) ∞
(C) 1
(D) None of these

Sol. $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \sqrt{\frac{\{1-(\sin x / x)\}}{\left\{1+\left(\cos ^{2} x / x\right)\right\}}}$
$=\sqrt{\frac{1-0}{1+0}}=1$.
Ans.[C]

Ex. 17 If $G(x)=-\sqrt{25-x^{2}}$, then $\lim _{x \rightarrow 1} \frac{G(x)-G(1)}{x-1}$ equals -
(A) $1 / 24$
(B) $1 / 5$
(C) $-\sqrt{24}$
(D) None of these

Sol. Here $G(1)=-\sqrt{25-x^{2}}=-\sqrt{24}$
\therefore Given limit
$=\lim _{x \rightarrow 1} \frac{-\sqrt{25-x^{2}}+\sqrt{24}}{x-1} \quad\left(\frac{0}{0}\right.$ form $)$
$=\lim _{x \rightarrow 1} \frac{x}{\sqrt{25-x^{2}}}$
(By L Hospital ruel)
$=\frac{1}{\sqrt{24}}$
Ans.[D]
Ex. 18 If $f(9)=9$ and $f(9)=4$, then $\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}$ is equal to -
(A) 1
(B) 3
(C) 4
(D) 9

Sol. Given limit is in $0 / 0$ form, so using Hospital rule, we get
Limit $=\lim _{x \rightarrow 9} \frac{\frac{1}{2 \sqrt{f(x)}} \cdot f(x)}{\frac{1}{2 \sqrt{x}}}$
$=\frac{\mathrm{f}(9) \cdot \sqrt{9}}{\sqrt{\mathrm{f}(9)}}=\frac{4 \cdot 3}{3}=4$
Ans.[C]
Ex. $19 \lim _{x \rightarrow \infty}\left(\frac{x+2}{x+1}\right)^{x+3}$ is equal to -
(A) 1
(B) e
(C) e^{2}
(D) e^{3}

Sol. Limit $=\lim _{x \rightarrow \infty}\left(\frac{x+2}{x+1}\right)^{x} \cdot\left(\frac{x+2}{x+1}\right)^{3}$. $=\lim _{x \rightarrow \infty}\left(\frac{1+2 / x}{1+1 / x}\right)^{x} \cdot\left(\frac{1+2 / x}{1+1 / x}\right)^{3}$
$=\frac{\lim _{x \rightarrow \infty}\left[(1+2 / x)^{x / 2}\right]^{2}}{\lim _{x \rightarrow \infty}(1+1 / x)^{x}} \cdot \lim _{x \rightarrow \infty}\left(\frac{1+2 / x}{1+1 / x}\right)^{3}$
$=\frac{\mathrm{e}^{2}}{\mathrm{e}} \cdot 1=\mathrm{e}$
Ans.[B]

Ex. 20 The value of $\lim _{x \rightarrow \infty} \frac{x(\log x)^{3}}{1+x+x^{2}}$ is -
(A) 0
(B) 1
(C) -1
(4) $1 / 2$

Sol. $\lim _{x \rightarrow \infty} \frac{x(\log x)^{3}}{1+x+x^{2}} \quad\left(\frac{\infty}{\infty}\right.$ form $)$
$=\lim _{x \rightarrow \infty} \frac{(\log x)^{3}+3(\log x)^{2}}{1+2 x} \quad\left(\frac{\infty}{\infty}\right.$ form $)$
$=\lim _{x \rightarrow \infty} \frac{3(\log x)^{2} \cdot \frac{1}{x}+6(\log x) \cdot \frac{1}{x}}{2}$
$=\lim _{x \rightarrow \infty} \frac{3(\log x)^{2}+6 \log x}{2 x} \quad\left(\frac{\infty}{\infty}\right.$ form $)$
$=\lim _{x \rightarrow \infty} \frac{6(\log x) \frac{1}{x}+\frac{6}{x}}{2}$
$=3 \lim _{x \rightarrow \infty} \frac{\log x+1}{x}$
$\left(\frac{\infty}{\infty}\right.$ form $)$
$=3 \lim _{x \rightarrow \infty} \frac{(1 / x)}{1}=0$.
Ans.[A]

Ex. $21 \lim _{x \rightarrow 0} \frac{\sin x^{0}}{x}$ is equal to -
(A) 1
(B) π
(C) x
(D) $\pi / 180$

Sol. Limit $=\lim _{x \rightarrow 0} \frac{\sin (\pi / 180) x}{x}$
$=\lim _{\mathrm{x} \rightarrow 0} \frac{(\pi / 180) \cos (\pi / 180) \mathrm{x}}{1}$
$=\frac{\pi}{180}$
Ans.[D]

Ex. 22 If $f(x)=\left\{\begin{array}{l}x-1, x<0 \\ 1 / 4, x=0 \\ x^{2}, x>0\end{array}\right.$ then $\lim _{x \rightarrow 0} f(x)$ equals -
(A) 0
(B) 1
(C) -1
(D) Does not exist

Sol. Here $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2}=0$
and $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(x-1)=-1$
$\because \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)$
$\therefore \lim _{\mathrm{x} \rightarrow 0} \mathrm{f}(\mathrm{x})$ does not exist.
Ans.[D]
Ex. $23 \lim _{x \rightarrow 0} \frac{2^{x}-1}{\sqrt{(1+x)}-1}$ equals -
(A) $\log 2$
(B) $2 \log 2$
(C) $1 / 2 \log 2$
(D) 2

Sol. Given Limit

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{2^{x}-1}{\sqrt{(1+x)}-1} \times \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} \\
& =\lim _{x \rightarrow 0} \frac{2^{x}-1}{x} \lim _{x \rightarrow 0}(\sqrt{1+x}+1) \\
& =2 . \lim _{x \rightarrow 0} \frac{2^{x} \log 2}{1}=2 \cdot \log 2
\end{aligned}
$$

Ans.[B]

Ex. 24 If a,b,c,d are positive real numbers, then $\lim _{n \rightarrow \infty}\left(1+\frac{1}{a+b n}\right)^{c+d n}$ is equal to -
(A) $e^{d / b}$
(B) $\mathrm{e}^{\mathrm{c} / \mathrm{a}}$
(C) $\mathrm{e}^{(c+d) /(a+b)}$
(D) e

Sol. $\quad \lim _{x \rightarrow \infty}\left(1+\frac{1}{a+b n}\right)^{c+d n}$
(1^{∞} form)
$=\mathrm{e}^{\lim _{x \rightarrow \infty}\left(1+\frac{1}{a+b n}-1\right) \times(c+d n)}$
$=e^{\lim _{x \rightarrow \infty} \frac{c+d n}{a+b n}}$
$=e^{\lim _{x \rightarrow \infty} \frac{c}{n}+d} \frac{a / n+b}{a}=e^{d / b}$
Ans.[A]
Ex. $25 \lim _{x \rightarrow \infty}\left(\frac{\pi}{2}-\tan ^{-1} x\right)^{1 / x}$ equals -
(A) 0
(B) 1
(C) ∞
(D) -1

Sol. Let $\mathrm{y}=\lim _{\mathrm{x} \rightarrow \infty}\left(\frac{\pi}{2}-\tan ^{-1} \mathrm{x}\right)^{1 / \mathrm{x}}$
$=\lim _{x \rightarrow \infty}\left(\cot ^{-1} x\right)^{1 / x}$

$$
\begin{aligned}
& \therefore \log _{\mathrm{y}}=\lim _{\mathrm{x} \rightarrow \infty} \frac{{\log \cot ^{-1} \mathrm{x}}_{\mathrm{x}}}{} \quad\left(\frac{\infty}{\infty} \text { form }\right) \\
& =\lim _{\mathrm{x} \rightarrow \infty}-\frac{1}{\left(1+\mathrm{x}^{2}\right) \cos ^{-1} \mathrm{x}} \quad \quad(0 \mathrm{x} \infty \text { form }) \\
& =-\lim _{\mathrm{x} \rightarrow \infty} \frac{\left(1+\mathrm{x}^{2}\right)^{-1}}{\cot ^{-1} \mathrm{x}} \\
& =-\lim _{\mathrm{x} \rightarrow \infty} \frac{\left.\frac{0}{0} \text { form }\right)}{\frac{-2 \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}} \frac{-1}{1+\mathrm{x}^{2}} \quad=-2 \lim _{\mathrm{x} \rightarrow \infty} \frac{\mathrm{x}}{1+\mathrm{x}^{2}} \\
& =-2 \lim _{\mathrm{x} \rightarrow \infty} \frac{1}{2 \mathrm{x}}=0 \quad \therefore \mathrm{y}=\mathrm{e}^{0}=1 \text { 1.Ans.[B] }
\end{aligned}
$$

Ex. $26 \lim _{x \rightarrow 0} \frac{x\left(2^{x}-1\right)}{1-\cos x}$ equals -
(1) 0
(2) $\log 2$
(3) $2 \log 2$
(4) None of these

Sol. The given limit $=\lim _{x \rightarrow 0} \frac{2^{x}-1}{x} \cdot \frac{x^{2}}{1-\cos x}$
$=\lim _{x \rightarrow 0} \frac{2^{x}-1}{x} \lim _{x \rightarrow 0} \frac{x^{2}}{2 \sin ^{2} \frac{x}{2}}$
$=\log x .2 \lim _{x \rightarrow 0}\left(\frac{x / 2}{\sin (x / 2)}\right)^{2}$

$$
=2 \log 2 .
$$

Ans.[C]
Ex. 27 The value of $\lim _{x \rightarrow 0}\left[\frac{a}{x}-\cot \frac{x}{a}\right]$ is -
(A) 0
(B) 1
(C) a
(D) $a / 3$

Sol. Given Limit $=\lim _{x \rightarrow 0}\left[\frac{a}{x}-\frac{\cos (x / a)}{\sin (x / a)}\right]$
$=\lim _{x \rightarrow 0}\left[\frac{a \sin (x / a)-x \cos (x / a)}{x \sin (x / a)}\right]$
$=a \lim _{x \rightarrow 0}\left[\frac{a \sin (x / a)-x \cos (x / a)}{x^{2}}\right] \times \frac{(x / a)}{\sin (x / a)}$
$=a \lim _{x \rightarrow 0}\left[\frac{a \sin (x / a)-x \cos (x / a)}{x^{2}}\right]\left(\frac{0}{0}\right.$ form $)$
$=a \lim _{x \rightarrow 0}\left[\frac{\cos (x / a)-\cos (x / a)+(x / a) \sin (x / a)}{2 x}\right]$
$=0$
Ans.[A]

